Смотреть что такое ПЛАСТМАССЫ в других словарях:

ПЛАСТМАССЫ

        то же, что Пластические массы.

ПЛАСТМАССЫ

ПЛАСТМАССЫ, то же, что пластические массы.

ПЛАСТМАССЫ

Слово «пластичность» на греческом означает «податливый», «годный для лепки». Долгое время единственным материалом, пригодным для лепки, оставалась глина. Теперь, говоря о пластических массах, или пластмассах, имеют в виду материалы, созданные на основе полимеров – веществ, молекулы которых (макромолекулы) состоят из большого количества повторяющихся структурных единиц (звеньев) одного или нескольких типов. Все животные и растительные организмы построены из макромолекул, т. е. из полимеров. Без них не было бы жизни на земле. Еще первобытный человек широко использовал камень, дерево и кость для изготовления орудий труда и оружия. Дерево и кость – органические полимеры. Кроме того, природными полимерами являются волокна растений, из которых делали нити и веревки, соединявшие части орудий, смолы растительного и минерального происхождения. С появлением одежды стали применяться органические полимеры животного и растительного происхождения – шкуры, лен, шелк. Органические полимеры, и прежде всего древесина, сыграли огромную роль в строительстве, судостроении, транспорте и авиации. До середины XIX в. человечество вполне обходилось природными полимерными материалами, но затем положение изменилось. Это произошло по нескольким причинам: во?первых, стала ощущаться нехватка некоторых природных материалов, во?вторых, развитие техники выявило потребность в материалах с новыми свойствами, не существовавших в природе. Их нужно было получать. Несмотря на то, что некоторые вещества были открыты, прошло много времени до начала их промышленного производства. С давних времен химики во время опытов получали на дне и стенках колб смолу – густое, вязкое вещество, которое не всегда удавалось отделить от стекла. Сначала посуду просто выбрасывали, позже химики начали исследовать странные вещества. Подобные исследования иногда позволяли обнаружить неизвестный ранее полимер. Многие известные сейчас синтетические полимеры были открыты случайно. Их широкое применение началось лишь десятилетия спустя. Так, полистирол впервые был получен в 1839 г., его промышленное производство началось в 1920 г. Приоритет получения полимера из формальдегида принадлежит А. М. Бутлерову, сделавшему это в 1859 г. Промышленное же производство его началось 101 год спустя, в 1860 году. Одними из первых полимерных материалов, запущенных в промышленное производство, были целлулоид, резина и эбонит. Их получали на основе природных полимеров. Целлулоид получали из нитрата целлюлозы и камфоры. Его применение в качестве материала для биллиардных шаров спасло жизни тысячам слонов, бивни которых служили сырьем для изготовления главного атрибута этой благородной игры. В конце XIX – начале XX в. непременным атрибутом мужчин были целлулоидные воротнички и манжеты. Целлулоиду обязаны своим развитием фотография и кинематограф. Это были новые области техники, для которых традиционные материалы не подходили. Впоследствии целлулоид из?за своей легковоспламеняемости был вытеснен другими пластиками. Теперь он применяется лишь для изготовления шариков для настольного тенниса. Эбонит – резина, содержащая около 30 % серы. По свойствам он совсем не похож на резину. В конце XIX в. нужды электротехники вызвали к жизни фенольные пластики – различные фенопласты, резолы, карболиты. Это уже были настоящие синтетические полимеры, получаемые из фенола и формальдегида. Из них прессовали электрические патроны, выключатели, розетки, телефонные аппараты, детали радиоприемников и т. п. Настала эра синтетических полимеров. В конце XIX – начале XX в. на основе формальдегида и фенола стали изготавливаться бакелиты, названные по имени бельгийского ученого. В 30?е годы XX в. английский химический концерн «Ай?Си?Ай» развернул программу исследований химических реакций под высоким давлением (50–150 МПа). Одна из целей этой работы состояла в проверке предположения, согласно которому при повышенном давлении некоторые реакции конденсации (соединения) молекул должны протекать с высокой скоростью без катализатора. Случайно одной из первых изученных реакций было взаимодействие этилена с бензальдегидом. Ожидаемого продукта конденсации в лабораторном автоклаве обнаружено не было. Но иногда на стенках сосуда находили белый твердый налет рогоподобного вещества. Сначала ему не придавали значения, так как, согласно данным анализа, он не содержал фрагментов бензальдегида. Но позже его начали исследовать. Вскоре было установлено, что это полимер этилена, по свойствам схожей с гуттаперчей – одним из видов натурального каучука. Гуттаперча, благодаря высокому электрическому сопротивлению, водонепроницаемости и пластичности, в то время широко применялась для изоляции подводных электрических, телеграфных и телефонных кабелей. Фирма, которой был предложен новый материал, специализировалась на изготовлении оболочек кабелей из гуттаперчи. Она располагала необходимым оборудованием. Уже через год стало ясно, что перед полиэтиленом как новым электроизоляционным материалом открывается большое будущее. Теперь концерн «Ай?Си?Ай» выделил крупные средства на создание уникального производства полимера этилена под давлением 150 МПа, и началась «полиэтиленовая» жизнь. Коротко остановимся на других, наиболее распространенных видах пластмасс. Фторопласт сейчас более известен под названием тефлон. Он представляет собой полностью фторированный полиэтилен. Фтор придает полиэтилену высокую химическую стойкость. Фторопласт применяется для уплотнения трубопроводов, производства посуды. Нейлон – это волокнообразующий полимер из группы полиамидов, разработанный американской фирмой «Дюпон». Лавсан, получивший название от лаборатории высокомолекулярных соединений Академии наук СССР – волокнообразующий полиэфир – полиэтилентерефталат. Все пластмассы делятся на термопласты и реактопласты. Термопласты построены из длинных нитевидных макромолекул. Температура размягчения термопластов от 100 до 250 °C в зависимости от химического состава. Термопласты при нагревании ведут себя подобно металлам. Если такой полимер нагреть, он начнет размягчаться, станет эластичным, тянущимся, как резина. Он становится пластичным, его можно продавливать, придавать ему любую форму. При охлаждении вновь затвердеет. Основными видами термопластов являются полиэтилен, поливинилхлорид, полистирол, полиформальдегид, фторопласт, полиамиды, поликарбонаты. Нитевидные макромолекулы называют линейными макромолекулами. Если у макромолекулы есть боковые ответвления – это разветвленные макромолекулы. При определенных условиях отдельные макромолекулы могут соединяться. Полимер, образованный из таких молекул, называется сшитым, сетчатым или трехмерным. Такой полимер уже не расплавляется при нагревании, а может только размягчаться. Свойства полимеров такого типа меняются в зависимости от строения. Редкосшитые полимеры более устойчивы к воздействию высокой температуры, чем линейные. Густосшитый полимер твердый, жесткий и неплавкий. Такие неплавкие полимеры получили название термореактивных, или реактопластов. Однородные, водостойкие, устойчивые к разным видам нагрузок реактопласты получают, используя в качестве связующего вещества эпоксидные, полиэфирные, феноло?альдегидные или меламино?формальдегидные смолы, а в качестве наполнителя – синтетические волокна, ткани, бумагу из этих волокон. После окончания формования изделий из реактопласта полимерная фаза в них приобретает трехмерную структуру. Поэтому реактопласты имеют более высокие, чем термопласты, твердость, прочность, упругость. При этом их свойства не зависят от температуры. Деление синтетических полимеров на термопласты и реактопласты обусловлено особенностями формования изделий из этих полимеров. Термопласты можно расплавить при нагревании, а из жидкого расплава формовать банки, коробки, волокна, трубы, листы, пленки. Одним из наиболее распространенных способов производства изделий из термопластов является литье под давлением. При этом способе пластмасса нагревается в отдельной камере и после размягчения насосом под давлением подается в холодную пресс?форму. Пластмасса заполняет ее и, охлаждаясь, затвердевает. Реактопласты из?за сетчатой структуры приходится перерабатывать горячим прессованием. При горячем прессовании смесь полимера с добавками засыпают в горячую пресс?форму, состоящую из неподвижной подставки, по форме которой сходной с формой прессуемых изделий, и подвижного поршня?пуансона. После загрузки смеси пресс?форму закрывают и начинают давить на смесь пуансоном. Нагреваясь, смесь становится пластичной и под давлением заполняет пресс?форму. Затем при нагревании и под действием повышенного давления (а иногда на воздухе при обычных температурах) протекает реакция сшивания макромолекул, которую часто называют отверждением. Таким образом, реактопласт образуется непосредственно в форме. Этот процесс может занимать от нескольких минут до многих часов. Постепенно масса затвердевает, и изделие вынимают из прессформы. Таким способом можно изготавливать детали любой формы. Помимо полимера в состав пластмасс могут входить различные добавки: наполнители, пластификаторы, красители. Наполнители придают пластмассе прочность, термостойкость, высокое электрическое сопротивление. В качестве наполнителя используют волокна, ткани, опилки и другие материалы. Если в качестве наполнителя используют ткань, то такие пластмассы называют текстолитами. Ткань, выступая в роли каркаса, значительно повышает прочность пластмассы. Применение наполнителей снижает стоимость пластмасс, поскольку они дешевле самого полимера. Пластификаторы увеличивают пластичность материала и готовой пластмассы. Пластификатором обычно выступают молекулы низкомолекулярного органического вещества. Его молекулы внедряются между молекулами полимера, ослабляя связи между ними. Это позволяет формовать пластмассу при более низкой температуре. С помощью добавок можно придать пластмассам необходимые свойства. Так, вводя в состав пластмасс вещества, которые при нагревании разлагаются с образованием газов, получают газонаполненные пластмассы – пенопласты и поропласты. Газ внутри пенопластов образует замкнутые полости. В поропластах материал пронизан сообщающимися друг с другом сквозными порами. Газонаполненные пластмассы образуют целое семейство. Среди них есть жесткие, твердые, эластичные. Они прекрасные тепло– и звукоизоляторы. Удельный вес пено– и поропластов значительно ниже, чем у дерева и пробки. В стеклопластиках используется для упрочнения стекло в виде волокон, жгутов, матов, коротких волоконец. Связующим полимером могут быть эпоксидные и полиэфирные смолы, полиамиды, полипропилен и другие. Существуют пластмассы, в которых роль усиливающих элементов играют углеродные, борные волокна. Их называют углепластиками, боропластиками. Пенопласты, стеклопластики, а также слоистые пластмассы называют собирательным термином – композиционные материалы. В начале XX в. во всем мире производилось всего несколько тысяч тонн пластмасс – очень мало по сравнению с другими конструкционными материалами – металлами, деревом, цементом, стеклом. В XX в. производство полимеров превысило по объему производство стали и цветных металлов. Очень важно сравнивать эти показатели именно по объему, поскольку плотность синтетических полимеров значительно ниже, чем плотность металлов. Самый легкий металл – алюминий, его плотность 2,3 г/см3, железа – 7,8 г/см3. Плотность большинства полимеров колеблется от 0,9 г/см3 (плотность полипропилена) до 1,4 г/см3 (плотность поливинилхлорида). Следовательно, при равной массе объем полимеров примерно в 5–7 раз больше объема стали. С каждым годом прирост выпуска полимеров постоянно растет, а выпуск металлов фактически стабилизировался. По сравнению с металлами, у пластмасс есть несколько важных преимуществ: 1) пластмассы намного легче железа. При создании новых самолетов, автомобилей, кораблей, машин и механизмов, бытовых приборов и других конструкций это крайне важно: возрастают грузоподъемность, производительность, мощность, экономится топливо; 2) пластмассы не ржавеют, а из?за коррозии железа и стали почти треть ежегодно добываемого металла идет на замену проржавевшего; 3) трущиеся детали из пластмасс работают гораздо бесшумнее металлических, требуют меньше смазочных материалов или не требуют их вовсе. Это, в конечном итоге, тоже экономит энергию; 4) существует еще одна причина, пожалуй, наиболее важная: практически в любой отрасли промышленности, где для производства различных изделий применяют синтетические полимеры, они обеспечивают рост производительности труда, позволяют снизить энергетические и материальные затраты. Пластмассы успешно заменяют дерево, натуральные волокна, керамику. Изделия из них легче формовать, производство пластмасс дает меньше отходов, они более долговечны. Помимо того, из?за резкого возрастания населения Земли возникла нехватка натуральных материалов. Сырье для производства полимеров станет (или уже стало) дефицитным, поэтому нужно научиться его экономить. Ученые уже сейчас работают над этой проблемой в четырех направлениях. 1. Упрочнение материала для уменьшения его расхода. Из более прочного материала можно сделать изделие с более тонкими стенками, более тонкую пленку или волокно. Одно из основных направлений повышения прочности – создание композитов. Не исчерпаны также резервы повышения качества полимеров за счет направленной кристаллизации, ориентации. В качестве примера можно взять полиэтилен. Полиэтиленовая пленка легко рвется, ее прочность при растяжении всего 20 МПа. Но специально ориентированные при вытяжке высококристаллические волокна и пленки из полиэтилена могут иметь прочность до 200 МПа. 2. Стабилизация для увеличения срока службы. Полимерам не страшна ржавчина, но им свойственно старение. Под действием ультрафиолетовых лучей, кислорода воздуха, влаги они темнеют, растрескиваются, становятся хрупкими. Со старением полимеров борются, вводя в них различные стабилизаторы – добавки, замедляющие процессы старения. Полиэтиленовая пленка без стабилизаторов служит один сезон, стабилизованная – три сезона. Хотя стоимость стабилизаторов высока. 3. Утилизация отходов. Отходы полиэтиленовой пленки собирают и пускают на вторичную переработку. Вторичный полиэтилен уступает по свойствам «свежему», но находит широкое применение. «Вторичный» капрон получают из чулок и носков. Изделия из реактопластов нельзя вновь расплавить. Сначала ученые искали способы их разложения химическими или биологическими методами. Но это энергетически не выгодно. Возможный путь – использование размолотых полимеров в виде наполнителей для композитов. 4. Наполнить для того, чтобы разбавить. Во многих случаях в полимерные материалы можно вводить дешевые минеральные наполнители: мел, тальк, глиноземы, песок, цементную пыль, вулканическое стекло, отходы производства волокон и т. п. Многие из этих веществ уже используют для наполнения реактопластов. Когда полимер образует трехмерную сетку, он цепко удерживает частицы наполнителя. Материал при этом приобретает прочность, твердость, расход полимера снижается. Теперь на очереди наполнение термопластов. Здесь задача посложнее: линейные полимеры слабо взаимодействуют с неорганическими наполнителями, и материалы, содержащие 30–50 % наполнителя, получаются хрупкими. Для решения этой проблемы предложены добавки поверхностно?активных веществ, которые заметно улучшают взаимодействие между полимером и частицами наполнителя. Небольшие (около 1 %) добавки этих веществ позволяют получать наполненные термопласты с хорошими механическими свойствами. Перспективным является метод так называемой механохимической обработки. В этом случае частицы наполнителя подвергают размолу в быстродействующей аппаратуре (шаровые или струйные мельницы, дезинтеграторы) в присутствии полимеров или мономеров. При разламывании твердой частицы на ее поверхности образуются химически активные группы, способные взаимодействовать с полимером. Если наполнитель сначала подвергнуть размолу, а затем смешать с полимером, то прочностные показатели такой композиции будут на 25–40 % ниже показателей композиции, полученной механохимическим способом. Еще больше надежд ученые возлагают на способ полимеризационного наполнения. В этом случае с наполнителем смешивают мономер, жидкий или газообразный. Предварительно на поверхности наполнителя тем или иным химическим способом закрепляют молекулы катализатора. Затем создают такие условия, чтобы макромолекулы полимера вырастали непосредственно на поверхности частиц наполнителя. Получается композит, в котором неорганический наполнитель химически связан с органическим полимером. Прочностные показатели такой композиции будут на 25–40 % ниже показателей композиции, полученной механохимическим способом. В результате технической революции пластмассы практически во всех отраслях промышленности потеснили традиционные природные материалы.... смотреть

ПЛАСТМАССЫ

ПЛАСТМАССЫ(пластические массы, пластики). Большой класс полимерных органических легко формуемых материалов, из которых можно изготавливать легкие, жесткие, прочные, коррозионностойкие изделия.Эти вещества состоят в основном из углерода (C), водорода (H), кислорода (O) и азота (N). Все полимеры имеют высокую молекулярную массу, от 10 000 до 500 000 и более; для сравнения, кислород (O2) имеет молекулярную массу 32. Таким образом, одна молекула полимера содержит очень большое число атомов.Некоторые органические пластические материалы встречаются в природе, например асфальт, битум, шеллак, смола хвойных деревьев и копал (твердая ископаемая природная смола). Обычно такие природные органические формуемые вещества называют смолами. В ряде случаев в качестве сырья применяются природные полимеры - целлюлоза, каучук или канифоль; чтобы достичь желаемой эластичности, их подвергают различным химическим реакциям. Например, целлюлозу посредством разнообразных реакций можно превратить в бумагу, моющие средства и другие ценные материалы; из каучука можно получить резину и изолирующие материалы, используемые как покрытия; канифоль после химической модификации становится более прочной и устойчивой к действию растворителей.Хотя модифицированные природные полимеры и находят промышленное применение, большинство используемых пластмасс являются синтетическими. Органическое вещество с небольшой молекулярной массой (мономер) сначала превращают в полимер, который затем прядут, отливают, прессуют или формуют в готовое изделие. Сырьем обычно являются простые, легко доступные побочные продукты угольной и нефтяной промышленности или производства удобрений.Полимеризация. Слово "полимер" ? греческого происхождения. Буквально, полимер ? это молекула, состоящая из многих (поли-) частей (мерос), каждая из которых представляет собой мономерное, т.е. состоящее из одной (монос) части, звено полимерной цепи. Реакция получения полимера из мономера называется полимеризацией. Полимерные молекулы обычно представляют собой очень длинные цепи, линейные или разветвленные. Образование этих молекул возможно благодаря тому, что атомы углерода легко и прочно соединяются друг с другом и со многими другими атомами.Известно много типов полимеризации, однако наиболее распространены два из них: присоединительная (аддиционная) полимеризация и поликонденсация.В присоединительной полимеризации мономеры присоединяются друг к другу непосредственно, без изменения состава. Например, молекулы этилена H2C=CH2, состоящие из 6 атомов каждая, соединяются, образуя полиэтилен. Фрагмент полиэтиленовой цепи выглядит следующим образом:Вся цепь содержит более 6000 атомов. Углеродные атомы цепи соединены простыми (одинарными), а не двойными связями (рис. 1). Эту реакцию можно записать как nH2C=CH2 ? n, где n (число составных звеньев) может достигать 1000 и более, т.е. структура в скобках должна повторяться 1000 и более раз. Сходным образом этиленоксид C2H4O превращается в полиэтиленоксид согласно схеме:Эти структуры возможны, поскольку углеродный атом образует четыре связи с другими атомами, кислород - две, а водород - одну связь (см. также УГЛЕРОД; ХИМИЯ).Присоединительная полимеризация редко идет самопроизвольно. Она может быть инициирована определенными катализаторами, обычно свободнорадикальными, катионными или анионными. Инициированные ими реакции ? экзотермические (идущие с выделением тепла). Промышленные полимеризационные процессы, проводимые в интервале температур от -80? до 120??С, дают большие выходы полимеров за короткое время (см. также КАТАЛИЗ).При поликонденсации два или несколько различных мономеров реагируют, образуя цепь. При этом от их молекул отщепляются небольшие фрагменты, которые, соединяясь друг с другом, обычно образуют воду, т.е. в конечном полимерном продукте присутствуют не все атомы мономеров. Важное условие поликонденсации состоит в том, чтобы каждый мономер был бифункциональным, т.е. содержал две функциональные группы; обе они могут реагировать с функциональными группами другого компонента. Функциональные группы ? это те части молекулы, которые непосредственно участвуют в химической реакции, т.е. места, где атомы, ионы, радикалы или другие группы могут либо отщепляться от молекулы, либо присоединяться к ней.Например, гексаметилендиамин H2N(CH2)6NH2 имеет две аминогруппы NH2, поэтому его называют диамином. Адипиновая кислота HOOC(CH2)4COOH имеет две карбоксильные группы COOH, поэтому ее называют дикарбоновой или двухосновной кислотой. В реакции поликонденсации, типичной для всех диаминов и двухосновных кислот, гексаметилендиамин и адипиновая кислота, отщепляя воду, образуют цепь:Реакция на этом не заканчивается, поскольку образующиеся промежуточные соединения также бифункциональны и могут реагировать с мономерами или друг с другом. Конечным результатом являются длинные линейные цепи повторяющихся звеньев -HN(CH2)6NH(O)C(CH2)4CO-. Схема реакции показана ниже. Полимеры такого типа называют полиамидами, поскольку они содержат много амидных групп C(O)-NH; они более известны под общим названием найлоны (см. также АМИДЫ).Другим большим семейством продуктов поликонденсации являются полиэфиры. Из них особенно важен полимер, получаемый взаимодействием терефталевой кислоты HOOC-C6H4-COOH и этиленгликоля HO-CH2-CH2-OH. Этот полимер, известный как терилен или дакрон, состоит из повторяющихся звеньев следующего строения:Термопласты. Все линейные или слегка разветвленные полимеры термопластичны. Это означает, что они могут многократно размягчаться при нагревании и затвердевать при охлаждении. При этом, в сущности, физическом процессе, похожем на повторяющиеся расплавление и кристаллизацию металла, химических изменений не происходит.Реактопласты (термореактивные, или термоотверждающиеся, пластмассы). Если процесс полимеризации протекает более чем в двух направлениях, то возникают молекулы, образующие не линейные цепи, а трехмерную сетку. Эти полимеры можно размягчить нагреванием, но при охлаждении они превращаются в твердые неплавящиеся тела, которые невозможно снова размягчить без химического разложения. Материалы такого рода называют реактопластами. Необратимое затвердевание вызывается химической реакцией сшивки цепей.Важным процессом этого типа является присоединительная полимеризация дивинилбензола:В дивинилбензоле две двойные винильные связи. В ходе полимеризации они образуют трехмерную сетчатую структуру. При нагревании полученный полимер медленно разлагается.Хорошо известный реактопласт - феноло-формальдегидную смолу - получают поликонденсацией фенола с формальдегидом. Первая стадия выглядит следующим образом:Тригидроксиметилфенол, реагируя с фенолом, способен отщеплять воду и образовывать трехмерную сетчатую структуру:Из вышесказанного следует простой и логичный вывод: все линейные полимеры термопластичны, а все сшитые сетчатые полимеры реактопластичны (термореактивны). Очевидно, структура мономерных единиц и их функциональных групп позволяют предсказать тип пластмассы, получаемой при полимеризации.Основные свойства пластмасс. Химические свойства. С точки зрения химического поведения полимер похож на мономер (или мономеры), из которого (или которых) он получен. Углеводороды этилен H2C=CH2, пропилен H2C=CH-CH3 и стирол H2C=CH-C6H5 претерпевают присоединительную полимеризацию, образуя полиэтилен, полипропилен и полистирол со следующими структурами:Эти полимеры ведут себя как углеводороды. Они, например, растворимы в углеводородах, не смачиваются водой, не реагируют с кислотами и основаниями, горят, подобно углеводородам, могут хлорироваться, бромироваться и ? в случае полистирола ? нитроваться и сульфироваться.Виниловый спирт CH2=CHOH полимеризуется в поливиниловый спиртпроявляющий свойства спирта: он растворим в воде, не смачивается маслами, устойчив к действию кислот и щелочей, подвергается этерификации, с альдегидами и ?-оксидами реагирует подобно другим спиртам.Полиэфиры, например, составарастворимы в некоторых высококипящих растворителях. Они не набухают в воде, но постепенно гидролизуются и разрушаются кислотами и щелочами, особенно при повышенных температурах. Эти реакции и свойства характерны для всех эфиров.Полиамиды (например, найлон-6,6; см. выше) ведут себя подобно амидам. Они еще более труднорастворимы, чем полиэфиры, не набухают в воде и гидролизуются под воздействием кислот и оснований при повышенных температурах, но гораздо медленнее, чем полиэфиры.Из изложенного ясно, что все главные химические свойства полимеров можно предсказать на основе их формул, рассматриваемых с точки зрения классической органической химии.Физические свойства полимера, напротив, зависят не только от характера мономера, но в большей степени от среднего количества мономерных звеньев в цепи и от того, как цепи расположены в конечной макромолекуле.Все синтетические и используемые в промышленности природные полимеры содержат цепи с различным числом мономерных единиц. Это число называют степенью полимеризации (СП) и обычно пользуются его средним значением, поскольку цепи не одинаковы по длине. Средняя длина цепи и СП может быть определена экспериментально несколькими методами (например, осмометрией ? измерением осмотического давления различных растворов; вискозиметрией ? измерением вязкости; оптическими методами ? измерением светорассеяния различными растворами; ультрацентрифугированием, при котором вещества разделяются по их плотности). СП особенно важна при определении механических свойств полимера, поскольку при прочих равных условиях более длинные цепи налагаются друг на друга более эффективно и порождают большие силы сцепления. Можно сказать, что заметная механическая прочность наблюдается уже при СП 50-100, достигая максимума при СП выше 1000.Термические и механические свойства в сильной мере зависят от расположения мономерных звеньев в полимерных цепях, поскольку полимеры могут кристаллизоваться, если цепи имеют регулярное строение и расположены параллельно друг другу, что достигается процессом, называемым ориентационным вытягиванием с отжигом. Чем выше степень кристалличности, тем тверже продукт, тем выше его температура размягчения и больше устойчивость к набуханию и растворению; низкой степенью кристалличности характеризуются более мягкие продукты с более низкими температурами тепловой деформации и более легкой растворимостью (рис. 2).Молекулярному движению в полимерах подвержена не вся цепь. Движение происходит в отдельных сегментах, которые колеблются, вращаются и извиваются независимо друг от друга. Это движение зависит от температуры. При низких температурах движение происходит медленно или почти отсутствует, так что некристаллический или аморфный полимер при низких температурах хрупок и тверд, как стекло. Если материал содержит области кристалличности, они в целом действуют как армирующие элементы, и при низких температурах образец жесткий, твердый и труднорастворимый. Нагревание аморфного полимера ускоряет движение сегментов; по мере повышения температуры это движение становится столь сильным, что материал из твердого и хрупкого (стеклообразного) превращается в достаточно мягкий и пластичный. Температура такого перехода называется температурой стеклования Tст. В случае частично-кристаллического полимера это размягчение происходит только в некоторых местах структуры материала; кристаллические области остаются незатронутыми. Выше точки стеклования такие образцы становятся более гибкими и податливыми, но еще сохраняют свои армирующие кристаллические области, усиливающие жесткость. При дальнейшем нагревании достигается температура, когда плавятся кристаллические области; эта температура, Tпл, называется температурой плавления. Выше нее система ведет себя как очень вязкая жидкость. Такое поведение характерно для термопластов, у реактопластов подобных точек перехода нет.а Ниже Tст пластмассы хрупки и тверды, между Tст и Tпл - гибки и податливы, выше Tпл они являются вязкими расплавами.Оптические свойства. Пластические материалы бывают различной степени прозрачности ? от совершенно прозрачных до матовых. Все аморфные полимеры прозрачны, тогда как в частично-кристаллических полимерах появляется некоторая мутность из-за различий в показателях преломления кристаллических и аморфных областей, которые неодинаково отклоняют световые лучи; при этом свет рассеивается и материал выглядит мутным. Если степень кристалличности низка и средний размер кристаллических областей мал, менее 500 (1 = 10-10 м), тонкая пленка материала еще прозрачна (например, майлар, саран, профакс). Высокая же степень кристалличности и более крупные кристаллические области придают дымчатость даже тонким пленкам (например, полиэтилен, найлон-6, найлон-6,6).Электрические свойства. Все органические пластмассы являются изоляторами, а потому находят применение в электротехнике и электронике. В табл. 2 приведены некоторые важные электрические свойства ряда промышленных пластмасс.Свойства пластмасс зависят от их основных характеристик: а) природы мономеров; б) средней СП; в) степени кристалличности системы.Термопластические материалы. Полиэтилен (ПЭ) n существует в двух модификациях, отличающихся по структуре, а значит, и по свойствам. Обе модификации получаются из этилена CH2=CH2. В одной из форм мономеры связаны в линейные цепи (см. рис. 1) с СП обычно 5000 и более; в другой - разветвления из 4-6 углеродных атомов присоединены к основной цепи случайным способом. Линейные полиэтилены производятся с использованием особых катализаторов, полимеризация протекает при умеренных температурах (до 150??С) и давлениях (до 20 атм). См. также КАТАЛИЗ.Линейные полиэтилены образуют области кристалличности (рис. 2), которые сильно влияют на физические свойства образцов. Этот тип полиэтилена (см. таблицу) обычно называют полиэтиленом высокой плотности; он представляет собой очень твердый, прочный и жесткий термопласт, широко применяемый для литьевого и выдувного формования (см. ниже) емкостей, используемых в домашнем хозяйстве и промышленности. Полиэтилен высокой плотности прочнее полиэтилена низкой плотности.... смотреть

ПЛАСТМАССЫ

Пластмассы - Пластические массы, пластики, - разнообразные материалы, получаемые преимущественно синтетическим путем из сырья органического происхождения. Пластические массы обладают пластичностью в процессе производства изделий и прочностью в готовом виде. Большинство изделий из пластических масс - прессованные или литые. Ассортимент пластических масс довольно обширен. Основными типами являются: 1. Фено- и аминопласты; сюда относятся бакелит, карболит, текстолит, кристаллит, полопас и другие; 2. Эфиры целлюлозы -целлулоид, ацетилцеллюлоза, этролы и другие; 3. Битумные - пеколиты, асбопеколиты и другие; 4. Белковые - галалит; 5. Продукты полимеризации -винилиты, стиролы, акрилаты. Экономическое значение пластических масс определяется: малым удельным весом (1,05-1,40), высокой механической прочностью, высокими электроизолирующими, фрикционными и антифрикционными свойствами, химической стойкостью, красивым внешним видом, негорючестью и прочими полезными свойствами. Пластмассы легко обрабатываются, удобны в массовом производстве благодаря их способности прессоваться. В настоящее время пластические массы нашли широкое применение в качестве заменителей металла и другие материалов в различных областях промышленности, начиная от изделий ширпотреба (выключатели, вилки, розетки, бритвенные приборы, настольные лампы), радиопромышленности (от цоколей для радиоламп вплоть до ящиков для радиоприемников), телефонии (трубки и аппараты), электротехники, полиграфической промышленности, транспорта и кончая промышленностью автотракторной, авиационной (детали магнето, приборы зажигания, освещения и управления), химической (антикоррозийные покрытия и материалы) и металлургической (вкладыши подшипников для прокатных станов и пр.) и т. д. Промышленное производство пластмасс ведет начало с открытия целлулоида (в 70-х годах 19 столетия в США - химиком Джоном Хайаттом), галалита (в 1900 году в Германии - химиком Шпателером) и особенно бакелита (в 1907 году в США - химиком Лео Бекелендом). Важным экономическим фактором является возможность использования в качестве сырья для пластмасс отходов различных производств, что облегчает сырьевую проблему пластмасс и обусловливает относительную их дешевизну.... смотреть

ПЛАСТМАССЫ

ПЛАСТМАССЫ (пластики), синтетические материалы, состоящие обычно из длинных цепей органических молекул, называемых ПОЛИМЕРАМИ, которым можно придать фо... смотреть

ПЛАСТМАССЫ

пластма́ссы пластические мас-с ы, пластики - материалы на основе природных или синтетических полимеров, способные под влиянием нагревания и давления ф... смотреть

ПЛАСТМАССЫ

пластмассы - пластические мас-с ы, пластики - материалы на основе природных или синтетических полимеров, способные под влиянием нагревания и давления формоваться и затем устойчиво сохранять приданную им форму; в состав пластмасс помимо полимера могут входить также наполнители (для удешевления или упрочнения материала) - древесная мука, асбест, стекловолокно, хлопчатобумажные очесы, бумага и др., а также пластификаторы, стабилизаторы, пигменты т др.; в зависимости от того, как полимер ведет себя при формовании изделия, пластмассы делят на термопласты и реактопласты. <br><br><br>... смотреть

ПЛАСТМАССЫ

Пластмассы (пластические массы) [пластики] – материалы, полученные из природных или искусственных высокомолекулярных соединений, способные под влия... смотреть

ПЛАСТМАССЫ

корень - ПЛАСТ; корень - МАСС; окончание - Ы; Основа слова: ПЛАСТМАССВычисленный способ образования слова: Бессуфиксальный или другой∩ - ПЛАСТ; ∩ - МАС... смотреть

ПЛАСТМАССЫ

, то же, что пластические массы.

ПЛАСТМАССЫ

ПЛАСТМАССЫ, то же, что пластические массы.

ПЛАСТМАССЫ

то же, что пластические массы.

ПЛАСТМАССЫ

то же, что пластические массы.

ПЛАСТМАССЫ

ПЛАСТМАССЫ - то же, что пластические массы.

ПЛАСТМАССЫ

ПЛАСТМАССЫ, то же, что пластические массы.

ПЛАСТМАССЫ

ПЛАСТМАССЫ, то же, что пластические массы.

ПЛАСТМАССЫ

- то же, что пластические массы.

ПЛАСТМАССЫ ГАЗОНАПОЛНЕННЫЕ

Пластмассы газонаполненные (ячеистые пластмассы, пенопласты, поропласты). Органические высокопористые материалы, получаемые из синтетических смол.Источ... смотреть

ПЛАСТМАССЫ ГАЗОНАПОЛНЕННЫЕ

Пластмассы газонаполненные (ячеистые пластмассы, пенопласты, поропласты). Органические высокопористые материалы, получаемые из синтетических смол.

ПЛАСТМАССЫ ГАЗОНАПОЛНЕННЫЕ

ПЛАСТМАССЫ ГАЗОНАПОЛНЕННЫЕ. (Газонаполненные ячеистые пластмассы, пенопласт, поропласт). Органические высокопористые материалы, получаемые из синтетических смол.<br><br><br>... смотреть

ПЛАСТМАССЫ КОНСТРУКЦИОННЫЕ

Пластмассы конструкционные – характеризуются высокими механическими свойствами. К ним относятся, например, ударопрочный полистирол, фенопласты, сте... смотреть

ПЛАСТМАССЫ С ПОРОШКОВЫМ НАПОЛНИТЕЛЕМ

Пластмассы с порошковым наполнителем – в качестве наполнителя применяют древесную муку, молотые кварц, асбест, слюду, графит и т.д. Имеют невысокие... смотреть

ПЛАСТМАССЫ ЯЧЕИСТЫЕ

"...Ячеистые пластмассы - это пластмассы, имеющие много ячеек (либо открытых, либо закрытых, либо тех и других), распределенных по всей массе. Они вклю... смотреть

T: 150